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ABSTRACT

Historical relationships among languages are used as a proxy for social history in many
non-linguistic settings, including the fields of cultural and molecular anthropology.
Linguists have traditionally assembled this information using the standard comparative
method. While providing extremely nuanced linguistic information, this approach is time-
consuming and labor-intensive. Conversely, computational approaches are appreciably
quicker, but can potentially introduce significant error. Furthermore, current methods
often use cognate sets that were themselves coded by historical linguists, thus reducing the
benefit of computational approaches. Here we develop a method, based on the ALINE
distance, to extract feature-sensitive relationships from paired glosses, datasets that
require minimal contribution from trained linguists beyond transcription from primary
sources. We validate our results by comparison with data generated independently via the
comparative method, and quantify error rates using consistency indices. To showcase our
method’s utility and to demonstrate its robustness at local and regional scales, we apply it
to two language datasets from eastern Indonesia. As linguistic datasets proliferate,
scalable computational methods that mimic historical linguistic reconstruction will
become increasingly necessary. Although at present we cannot disentangle all the
processes driving linguistic change (e.g. lexical borrowing), our method provides a robust
and accurate alternative to manual linguistic analysis. The feature-sensitive method
adopted here accurately and automatically identifies emergent patterns hidden in
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traditional word-lists by analysing critical phonetic information that is discarded (or
required as prerequisite) by many current cognate-based computational methods. This
approach is not intended to supplant manual linguistic analysis, but has an important
role in quickly generating robust data for non-linguistic fields or interdisciplinary projects
that require formal quantitative analysis of historical linguistic relationships. Our
approach provides a workable approximate phylogeny in cases where a trained linguist is
unavailable, or otherwise significantly reduces the time and effort required for manual
classification.

INTRODUCTION

Determining how and why languages change is a central goal of modern
linguistics. To understand these processes completely, it is important to
determine how languages evolve relative to the historical processes acting
in communities where they are spoken. Growing bodies of joint spatial,
linguistic and genetic data now make such complex comparisons
possible. However, shared quantitative frameworks are essential if
datasets from multiple disciplines are to be compared and integrated.
The magnitude of these datasets also requires the application of robust
computational approaches.
The concept of distance is one of the most basic quantities used to

compare data from different sources. While natural definitions exist for
geography and several distance metrics have been defined for genetic
data, there is no consistent use, or clear definition, of a corresponding
linguistic distance. In addition to facilitating comparisons with other
data types, such a statistic would allow the rich assemblage of distance-
based statistical techniques developed by other fields to be transferred
directly to linguistics. For many applications, a meaningful linguistic
distance would allow automation of analysis, and therefore facilitate the
study of large language datasets, which are time-prohibitive to analysis
via traditional linguistic approaches.
Here, we focus specifically on the construction of a computational

linguistic statistic, the ALINE distance, to compare linguistic informa-
tion with other data sources quantitatively. This distance measure will
allow automation of some historical linguistic tasks, such as tree-building
and map-making. Results integrating our linguistic and genetic data are
too extensive to be reported fully here, but are published elsewhere
(Lansing et al., 2007). We show that the ALINE distance has several
properties that are superior to previous distance statistics, and we suggest
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new computational directions to allow the exploration of large linguistic
datasets and link them with non-linguistic data.

Motivation
Our desire to develop the ALINE distance derives from research within
the Austronesian Societies project, which seeks to integrate geographic,
genetic, linguistic and cultural data from central and eastern Indonesia,
and thereby understand the historical processes driving both genetic and
linguistic change in this region. We currently possess paired geographic,
genetic and linguistic data from 50 Indonesian communities, and further
data collection is planned. Our linguistic data comprises a database of
200-word Swadesh lists from more than 400 Indonesian languages. While
considerable historical research is already available for these languages,
the standard comparative method does not naturally produce quantita-
tive values that can be compared statistically with genetic and geographic
data. The sheer number of languages in our project, and a desire to
understand the joint history of gene and language co-evolution, drove us
to develop the computationally-based distance statistic described here.

Linguistic Distances
Beginning with L. Luca Cavalli-Sforza (Cavalli-Sforza et al., 1988;
Cavalli-Sforza, 1997), many studies have examined gene/language
relationships on continental and regional scales (Sokal, 1988; Barbujani
& Sokal, 1990; Cavalli-Sforza et al., 1992; Smouse & Long, 1992; Chen,
Sokal & Ruhlen, 1995; Cavalli-Sforza, 1997; Cox, 2003; Nettle & Harriss,
2003; Hunley & Long, 2005), and more recently, at smaller geographical
levels (e.g. Cox & Lahr, 2006). Some attempts (Cavalli-Sforza et al., 1988,
1992; Cavalli-Sforza, 1997) simply compared genetic and linguistic
phylogenies, and identified general associations between subgroup clades.
However, the difficulty of assigning statistical significance to phylogenetic
comparisons at these large scales limited the power of this approach.
Others have examined allele frequency data and looked to see if
abrupt changes in gene frequencies correspond with linguistic barriers
(Barbujani & Sokal, 1990; Hunley & Long, 2005). Later studies applied
distance-based, Mantel correlation methods to examine relationships
between geographic, genetic and linguistic distances (Sokal, 1988; Smouse
& Long, 1992; Chen et al., 1995; Nettle & Harriss, 2003). However, these
distance measures suffer from several deficiencies. Chen et al., (1995) used
subjective distance estimates on a scale of 1–60, as assessed by a trained
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historical linguist. Sokal (1988), Nettle and Harris (2003), and others used
the number of branch nodes separating languages within an existing
phylogeny to construct tree-based integer stepwise distances. At a slightly
finer scale, Smouse and Long (1992) constructed a distance measure from
the percentage of shared cognates between languages.
One clear deficiency of these distance measures is their lack of

resolution. For example, many languages are only one branch apart in a
tree-based distance, but their degree of similarity may be highly variable.
Likewise, cognate-based distances suffer from their inability to distin-
guish similarity within cognate and non-cognate classes. While these
distances may be fine enough to detect broad correlations between
language families and genetic lineages at large scales, their inability to
distinguish more subtle differences at local or regional scales is severely
restrictive. As more data becomes available at the scale of communities, it
will become increasingly important to have distance measures that
distinguish closely related languages, and hence, closely related words.
All these approaches also suffer from their requirement for pre-existing
historical linguistics analysis – either to define a tree of language
relationships, or to determine shared cognates. While the comparative
method is unparalleled in the detail and nuance it can extract from
linguistic datasets, it does not naturally produce quantitative measures.
Furthermore, distances may also be difficult or impossible to compute for
large datasets due to obligate manual implementation of the comparative
approach. (Interestingly, phylogenetic trees are constructed in reverse
fashion in genetics; trees are computed directly from distance matrices).
In our view, a comparative linguistic distance measure should satisfy

the following requirements:

1. Be based on the finest phonetic detail feasible.
2. Quantify linguistic differences in a linguistically meaningful way.
3. Be easily computable for large datasets.
4. Be free from subjective decisions.
5. Require little or no preliminary analysis, such as word classification

into cognate sets or construction of a language tree.
6. Reproduce results from standard historical methods as closely as

possible.

The linguistic literature discusses several distance measures that meet
some of these requirements (Kruskal, 1983; Covington, 1996, 1998;
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Somers, 1998; Kondrak, 1999; Nerbonne, Heeringa & Kleiweg, 1999;
Lebart & Rajman, 2000; Heeringa et al., 2006), and most are based on
the alignment of character strings with subsequent scoring of aligned
features. The simplest version of this type of measure, the Levenstein or
edit distance, counts the number of changes required for one string to
mutate into another (Kruskal, 1983). More sophisticated variations
incorporate complex alignment and scoring algorithms. Some of these
algorithms have been used for linguistic tasks like cognate identification
and dialect research (Heeringa et al., 2006), and the Levenstein distance
has previously been used to compare linguistic and geographic data
(Nerbonne et al., 1999). However, none have been applied to linguistic
comparisons with genetic data. The ability of these metrics to reproduce
results from traditional linguistic methods also remains unexplored.
Kondrak (1999) reviewed the strengths and weaknesses of the main

algorithms for aligning and scoring phonetic sequences, and demon-
strated the performance benefits of the ALINE algorithm for this task.
Taking this research as our foundation, we propose a new distance
measure, the ALINE distance. This is based on feature-level phonetic
similarity scores for word pairs, is computed with Kondrak’s ALINE
algorithm, meets the requirements above stated for a distance measure,
and proves a meaningful measurement of linguistic distance. This
linguistic distance is well suited to comparisons with genetic and
geographic data. We assume no prior linguistic information, apart from
lists of shared-meaning word pairs. Language data need not be
categorized in any other way (e.g. into cognate sets or language
phylogenies). The approach can be readily scaled to thousands of words
and languages, and we show that the method is able to reconstruct
traditional comparative historical linguistic classifications with some
accuracy.
Overall, our approach promises to be useful in several contexts. We

stress that we do not envisage ALINE replacing the traditional methods
of trained linguists, but rather see the benefit of both approaches being
used in conjunction. Our method can act as a first-pass operation for
large datasets, therefore saving linguists many hours of initial classifica-
tion. It also provides a way to quantify language relationships that have
previously been determined only qualitatively. We imagine a number of
data-mining and automated classification/mapping tasks that could
initially be performed computationally, and later checked by a linguist
who is familiar with the languages under study. Lastly, although our

344 S. S. DOWNEY ET AL.



research focuses on relationships between geography, genetics and
language, we note no reason why this linguistic distance could not be
compared with other data sources, such as economic, political or cultural
information.

ALINE ALGORITHM

The ALINE algorithm (Kondrak, 1999, 2000) examines shared-meaning
word pairs, and generates a similarity score for the optimal feature-based
phonetic alignment of each word pair. Although other algorithms exist
for this purpose, Kondrak (1999, 2000) demonstrated many important
benefits of the ALINE approach. This algorithm has been implemented
as software coded in Cþþ, which is used here as the basis for the ALINE
distance. Phonetic segments are represented as vectors of feature values
in the following categories: prosodic (syllabic), place, manner, phonation,
vowel length and colour. Features are locally aligned to determine the
optimal phonetic similarity between word pairs, and an optimal
similarity score is generated (for detailed description, see Kondrak,
1999, 2000).
ALINE uses ASCII characters to represent its IPA counterparts. For

example, hpi represents [p], hii represents [i], and so forth. When this
notation fails, a set of modifiers (represented by capital letters) is
available for combination with standard ASCII characters. These can
represent features such as place and manner. The set of modifiers
presently utilized by ALINE is listed in Table 1.
The place characters hD, V, X, Pi represent the dental, palato-alveolar,

retroflex and palatal places of articulation, respectively. Using plain
characters in combination with place of articulation modifiers, ALINE
can represent the following series of consonants based on the unmodified
alveolar series (see Table 2).

Table 1. ALINE IPA to ASCII coding schema.

D dental N nasal
V palato-alveolar A aspirated
X retroflex H long
P palatal F front
S fricative C central
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Therefore, this system is representationally flexible. Table 3 shows the
relationship between IPA characters and their corresponding ALINE
encoding. This can capture differences within the traditional framework
of distinctive features, as every potential feature may be assigned its own
modifier. Moreover, modifiers may themselves be used in combinatorial
fashion, as is the case with the interdental fricatives illustrated above.
Notably, the current implementation of features in ALINE is not

exhaustive. For instance, the uvular place of articulation cannot
currently be represented, and we are forced to discard this information
by merging uvulars with plain velars in our study (Table 4).
However, this problem has a relatively straightforward solution:

choose a new modifier (say, hUi) for [uvular], and assign an appropriate
weight in the ALINE algorithm (Table 5). This approach can be
extended to any phonemes not currently included in the ALINE
character set, and such modifications are natural extensions to future
versions of the ALINE software.

LINGUISTIC METRICS FROM WORD-PAIR SIMILARITY

The ALINE algorithm returns a phonetic similarity score for a given
word pair (Kondrak, 1999, 2000). However, this raw score is not suitable
as a distance statistic, because scores from different word pairs are not
directly comparable. Furthermore, the raw ALINE score measures only
the similarity of optimally aligned phonetic segments of any two given
words, not the words overall. Consequently, the raw ALINE score must
be transformed mathematically into a ratio scale penalized for un-
aligned characters, if it is to be used as a metric of phonetic distances
between words, or by extrapolation, representative distances between
languages.

Table 2. Examples of IPA character encodings for the unmodified alveolar series.

IPA ALINE IPA ALINE IPA ALINE IPA ALINE IPA ALINE

t hti htDi 0 htsVi ! htXi c htPi
d hdi hdDi dZ hdzVi ¶ hdXi ˜ hdPi
s hsi y hsDi S hsVi hsXi " hsPi
z hzi D hzDi Z hzVi hzXi # hzPi
n hni hnDi ç hnXi J hnPi
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Consider the following examples, which demonstrate these problems
and their resolution. When given the pairs of words, api::api, ALINE
returns the score 65. However, api::apila also scores 65, because the last
syllable is unpaired. Furthermore, the ALINE score has no maximum

Table 3. IPA characters and corresponding ALINE encoding (minus h i’).

Obstruents Sonorants Vowels

IPA ALINE IPA ALINE IPA ALINE

p p m m i i
t t nD e e

tD n n æ aF
0 tsV ç nX y uF
! tX J nP œ oF
c tP ˛ gN $ iC
k k w w @ eC
? q l l ^ ac
ph pA r r a a
th tA j y u u

ut
h tDA o o

tSh tsVA
!h tXA
ch tPA
kh kA
b b
d d

dD
dZ dzV
¶ dX
˜ dP
g g
f f
s s
y sD
S sV

sX
" sP
x x
v v
z z
D zD
Z zV

zX
# zP
% gS
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value, because the number of aligned sequences between any two words
has no theoretical maximum. A very short pair of highly aligned words,
such as api::apik (score¼ 65), may receive a lower score than a pair of
long, but dissimilar words, such as kalarita::makebela (score¼ 75). Put
another way, the ALINE algorithm cannot distinguish two identical
words: pu::pu (score¼ 50) and tausebasai::tausebasai (score¼ 230).
Kondrak (1999) suggested normalizing the ALINE score by division

with the length of the longest word and multiplication with the maximum
possible similarity score between word segments. Here, we use a slightly
different approach; we normalize the word-pair score by the average
score of word self-comparisons:

snorm ¼ 2s

s1 þ s2
ð1Þ

where s is the ALINE word-pair score, and s1 and s2 are the ALINE
scores for each word compared to itself. This similarity score directly
represents how similar two words are to each other. It ranges from 0–1,
and converges to 1 as two words become more similar. Functionally, this
normalization also accounts for length differences and penalizes

Table 4. Exemplar data loss due to lack of ALINE encodings for uvular place of
articulation.

IPA ALINE IPA ALINE

k hki q hki
g hgi G hgi
x hxi w hxi
% hgSi & hgSi
˛ hgNi N hgNi

Table 5. Possible solution to data loss problem.

IPA ALINE IPA ALINE

k hki q hkUi
g hgi G hgUi
x hxi w hxUi
% hgSi & hgUSi
˛ hgNi N hgUNi
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misaligned word portions. To convert this similarity score to a true
distance (i.e. dissimilarity) statistic, we define the ALINE distance:

dALINE ¼ 1% 2s

s1 þ s2
ð2Þ

The effect of these manipulations is summarized in Table 6.
The ALINE distance reaches its maximum at 1, and in some cases

(such as comparison with geographic distance) it may be preferable to
use:

d ¼ % ln
2s

s1 þ s2

! "
ð3Þ

Table 6. Examples of ALINE scores before and after normalization.

Word comparison Raw ALINE score ALINE distance ALINE output

api::api 65 0 j a p i j
j a p i j

apik::apik 100 0 j a p i k j
j a p i k j

apila::apila 115 0 j a p i l a j
j a p i l a j

api::apik 65 0.212 j a p i j -
j a p i j k

api::apila 65 0.278 j a p i j - -
j a p i j l a

apik::apila 65 0.395 j a p i j l a -
j a p i j - - k

kalarita::kalarita 200 0 j k a l a r i t a j
j k a l a r i t a j

kalara::kalara 150 0 j k a l a r a j
j k a l a r a j

makebela::makebela 200 0 j m a k e b e l a j
j m a k e b e l a j

kalarita::kalara 142.5 0.186 j k a l a r a j - -
j k a l a r i j t a

kalarita::makebela 75 0.625 - - j k a - - l a j r i t a
m a j k e b e l a j - - - -

kalara::makebela 82 0.531 - - j k a l a r a j
m a j k e b e l a j
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which ranges from 0 to ?. We note that the Taylor expansion shows
these distances measures are nearly equivalent for small values
(approximately 0–0.6). However, in cases where two languages are very
similar, this transformation will separate similar values and may yield
better discrimination.
To scale multiple word-pair scores to inter-language divergence, we

define the ALINE distance between two languages as the average of
ALINE distances between corresponding word pairs. Intuitively, this
distance can be represented as how similar, on average, word pairs are
between the two languages. Although a weighted average may prove
better for certain applications, we have no a priori reason to weight some
word pairs more than others. Although we tried several normalization
schemes in the construction of this distance statistic, we found this
version performed best. Nevertheless, other normalizations and weight-
ing schemes may favour certain applications. It also may prove useful to
penalize dissimilarity in a more sophisticated way, such as weighting the
location of dissimilar word portions or variably penalizing different types
of word misalignment.
We realize that in transforming the raw ALINE similarity score into a

distance, we are departing from Kondrak’s original work. However, by
using the ALINE algorithm unaltered and normalizing it with informa-
tion from self-comparisons, we believe our approach preserves the
advantages of a similarity score, as outlined by Kondrak (1999), while
resulting in a more useful measurement of phonetic distance.

AUTOMATION

The ALINE algorithm is fast, and thus suitable for application to large
datasets. However, the ALINE input file specification is not designed to
handle more than two languages simultaneously. For our purposes, we
used a database written in FileMaker Pro 8.0 to store word lists and
language information, and to provide an interface for manual editing of
word lists using a Unicode-compliant IPA character set. The database
includes a lookup table and automatically generates the ASCII-
compliant feature encoding scheme of ALINE. Figure 1 shows the steps
required to transform paperbound Swadesh lists into ALINE distance
matrices. Perl v5.8.6 scripts were used to prepare ALINE input files from
a database export file, to batch input files for the ALINE executable, to
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parse ALINE output files into distance matrices, and to automate
other downstream analyses. All of the word-pair score normalization
and matrix-building options described herein are available through
command-line interfaces to these Perl scripts.

USING THE ALINE DISTANCE: VALIDATION AND
APPLICATION

Study Area and Data Sources
Our methodology was developed initially as part of an interdisciplinary
project to investigate the joint history of languages and genes in

Fig. 1. Flow chart illustrating the methodology used to create a phonetic distance matrix.
Products of the analysis are listed under ‘‘Output’’. Perl scripts used to automate steps are
indicated in brackets.
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Austronesian-speaking communities across the Indonesian archipelago.
To look for interesting patterns and correlations, our team collected
hundreds of genetic samples and built a database of 200-word Swadesh
lists for over 400 languages collected across the country by trained
linguists. Many of the lists come from a series of sixteen volumes
assembled by Pusat Bahasa Departemen Pendidikan Nasional, the
Indonesian National Linguistic Centre in Jakarta. The sheer volume of
these data is such that a through linguistic analysis is time prohibitive
without computational assistance.
To examine the performance of the ALINE distance, we applied it to

three goals, each focusing on a subset of our Indonesian language
dataset:

1. We examined a reconstructed chronosequence of words from the
village of Rindi, on the eastern Indonesian island of Sumba.

2. We constructed a language phylogeny for eighteen wordlists from
Sumba.

3. We created a language classification map for Austronesian and non-
Austronesian languages for the islands of Flores and Alor, also in
eastern Indonesia.

These applications serve as a validation of the relationships reconstructed
by the ALINE distance.

Chronosequence
Any reasonable linguistic distance should reflect and quantify historical
linguistic change. Unlike cognate-based approaches, the ALINE distance
can distinguish differences within cognate groups. In our case, the
languages of Sumba all belong to the geographically extensive
Austronesian family, which includes over a thousand languages
distributed from Madagascar to Polynesia (Gordon, 2005). These
languages trace their origin to proto-Austronesian (PAn) through a long
chain of proto-languages, including new reconstructions of proto-Sumba
(PS) and proto-East-Sumba (PES) derived from our own data. Many
words within the Sumbanese languages remain cognates with their PAn
counterparts even today. Because the evolution of these words is known
with some certainty, we can apply the ALINE algorithm to these
chronosequences to examine its performance.
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The following simplified schema represents the historical evolution of
Austronesian languages, beginning with proto-Austronesian and ending
with the extant east-Sumbanese language, Rindi:

Proto Austronesian (PAn)
#

Proto Malayo-Polynesian (PMP)
#

Proto Central-Eastern Malayo-Polynesian (PCEMP)
#

Proto Central Malayo-Polynesian (PCMP)
#

Proto Sumba (PS)
#

Proto Eastern Sumba (PES)
#

Rindi

This reconstruction is based on the work of Robert Blust and our own
data, and other branches of the accepted Austronesian family tree that
are irrelevant to the following discussion are excluded. Previous work has
tentatively associated PAn to archaeological evidence dating around
5000 BP, PMP to *4500 BP, and CEMP to *4000 BP (Bellwood, 1997,
pp. 119–120), with the division into CMP occurring not long thereafter.
Our new reconstructions for PS and PES presumably date after this time,
but their chronology is not firmly established.
To better understand how the ALINE distance functions as a tool for

understanding linguistic change, we applied it to reconstructed sequences
of words starting with PAn and ending with modern words from Rindi.
Table 7 shows five such chronosequences, and Figure 2 shows each
word’s trajectory from reconstructed PAn form to modern version. The
table and chart show how words have evolved over time, and how
ALINE distance renders those changes quantitatively. We emphasize
that the x-axis is purely categorical, and does not reflect time other than
in terms of general order.
Several trends are immediately apparent in this analysis. Vowel

changes seem to have relatively little effect on ALINE distance scores (as
expected from Table 1). Consonants have higher weightings than vowels,
and consonant change has relatively more effect on overall scores.
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Section deletions have the most impact. The relative weighting of these
changes is open to interpretation, and it may be preferable to change
certain weighting values in future versions of the ALINE software.

Table 7. Exemplar evolution of five words from proto-Austronesian (PAn) to
contemporary Rindi.

Node Date three two one swim louse

PAn1 5000 BP t@ru du a isa la˛uj ku!u
PMP 4500 BP t@lu duha isa na˛uj kutu
CEMP 4000 BP t@lu dua isa na˛uj kutu
CMP 54000 BP t@lu dua isa na˛uj kutu
PS 54000 BP t@lu duada isa na˛i utu
PES 54000 BP tailu dambu hau ˛ani wutu
Rindi Present tailu dambu hau ˛ieni wutu

1The following substitutions have been made in the traditional PAn inventory: ! for C,
for S, l for N, and r for l. In addition, j is substituted for y in conformance with normal
IPA usage.

Fig. 2. Word evolution for five glosses based on ALINE distances from proto-
Austronesian (PAn) to the contemporary language spoken at Rindi, Sumba, eastern
Indonesia. The x-axis reflects evolutionary order, but is not directly scaled to time.
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However, these results suggest that the ALINE distance is capable of
extracting high-level detail from the phonetic information contained in
word lists. This is a significant improvement over cognate-based distance
measurements, because it allows us to analyze change within cognate
classes. Other linguistic distance methods discard this important phonetic
information.
Figure 3 shows individual and average historical distances for 40 words

from contemporary Rindi. Despite significant variation between indivi-
dual trajectories, the average indicates an increasing distance measure
from PAn to the present. Significant differences may underlie the
phonetic evolution of individual words, but the average appears to be an
acceptable representation of the overall processes, and matches previous

Fig. 3. Plot of the ALINE distance in the historical development of forty words leading to
the contemporary language spoken at Rindi. Each thin black line represents the evolution
of one word. The thick black line shows the average ALINE score, which shows
increasing phonetic distance from PAn despite significantly different evolutionary
trajectories for individual words.
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work with these (proto-)languages using traditional comparative
linguistic approaches.
As an aside, we note that line slopes cannot be compared as proxies for

evolutionary rates, because the x-axis does not accurately reflect the relative
chronology of these proto-languages. However, these results do highlight
that phonetic evolution has no constant or average rate. This is clearly
indicated in Figure 3, where significant differences appear in the evolutionary
trajectories of forty Sumbanese words over the same time period.
Nonetheless, the average of these distances suggests that the ALINE
distance represents an increasing phonetic distance from proto-Austronesian
to the present, as is consistent with the outcome of traditional historical
linguistic methods. While some of these differences only reflect the internal
weighting scheme implemented by ALINE, other results suggest interesting
directions for further work using the ALINE distance to examine how and
when words or languages have undergone phonetic change.
Notably, this graph also indicates that the ALINE distance can

decrease from PAn to the present, with a word later in the sequence
appearing closer to the original form than intermediaries. Four examples
are shown in Table 8, where the node where distance measures change is
indicated in bold. The trajectories of these words are charted in Figure 4.
These words illustrate the difficulty of reconstructing language

evolution, but importantly, are minor contributors to the overall
language scores. Although there is clearly room for algorithmic
refinement (especially feature-weighting), ALINE satisfactorily evaluates
phonetic distances between lexical items. Idiosyncrasies such as these are
effectively integrated out at the language level, which is dominated by
extensive information content (Figure 3). Combined, these results

Table 8. History from PAn to Rindi of four words that show decrease in the ALINE
distance.

Node leg kill right blow

PAn qaqaj pa!aj kawanal iup
PMP qaqaj bunuq kawanan hiup
CEMP waqaj bunuq kawanan upi
CMP wai bunuq kawanan upi
PS wai pamate kawana pui
PES witi pamati kawana hapui
Rindi wihi pameti kawana hapuji
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indicate that the ALINE distance can quantify historical linguistic
change in a meaningful way, and in conjunction with standard historical
analysis, could highlight interesting phonological cases, or even identify
possible coding errors.

Language Phylogeny
One important task of historical linguistics is the construction of
language phylogenies showing historical relationships between lan-
guages. We constructed a language tree for eighteen languages on
Sumba, east Indonesia using the traditional comparative method
(Figure 5A). A number of methods have been developed in evolutionary
biology to produce trees from distance matrices (Felsenstein, 2004). We
examined the performance of the ALINE distance in tree construction by
building both UPGMA (unweighted pair group method with arithmetic
mean; Figure 5B) and neighbor-joining trees (Figure 5C) from our
distance matrices using the Phylip 3.65 program NEIGHBOR (Felsen-
stein, 2005). We constructed trees using the complete dataset (Figure 5B–
C) as well as trees using glosses identified as PAn cognates (not shown).
Since the languages still trace a significant portion of their lexicon to

Fig. 4. Incidents of decrease in phonetic distance from PAn to contemporary Rindi.
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PAn, this procedure allowed us to examine the role of a cognate-only
subset in determining tree topology.
To assess the robustness of the ALINE distance at the level of

language families, we examined trees produced by three Monte Carlo
simulation methods. We considered the degree to which ALINE
identifies gross phonological similarity between languages by shuffling
words and meanings within each language and comparing shuffled word
lists. We shuffled words between languages within a given gloss category
to produce random ‘languages’ from our dataset. Finally, to examine the
spread of tree topologies present in our distances, we constructed
pairwise language distances by sampling with replacement from the 200
individual gloss comparisons and averaging that sample. This process is
equivalent to looking at different random weighted means instead of
taking the unweighted mean of the 200 word comparisons.
We compared our trees using three methods. The Robinson-Foulds

symmetric distance (Robinson-Foulds, 1981) was computed with Phylip’s
TREEDIST. The MAST distance is the number of branches that must be
removed to obtain the maximal agreement sub-tree, and was computed
with Phylonet 1.2 (Than et al., 2008). The percentage similarity score is
computed with Nye’s online phylogeny comparison applet (Nye et al.,
2006). We note that the symmetric distance repeats in two-step multiples,
so a single branch difference between trees yields a distance of 2. Since all
these algorithms produce unrooted trees, we determined the root by
using the Balinese language as an outgroup language. Balinese is an
appropriate choice because it is also an Austronesian language, but
belongs to Western Malayo-Polynesian, a different branch of PMP than
that which leads to PS via CEMP. We omitted branch lengths since the
historical method does not produce them, a limitation of the standard
comparative approach. Figure 5 shows the results of the comparisons
below each computed tree and an exemplar random tree. The clade
designations A-E (Figure 5A) are based on the original tree constructed
through traditional means, and the order of clade lettering follows the
order in which divisions are understood to have taken place in actual
historical sequence (i.e. group A was the first to diverge from the proto-
Sumba unity, group B was the second, and so on).
UPGMA proves to be a more accurate method than neighbour-joining

for phylogeny reconstruction, and produces a tree surprisingly close to
the historical reconstruction. There are only three differences: it gets the
five major subgroups nearly correct, placing Kabu Karudi with Group A
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(rather than Group B); it places group C closer to groups D and E (rather
than A and B); and it also attaches Kalembu Ndra Mane closer to
Malata (than to Karuni within Group A). These differences are minor,
and can be quantified by the close distance of this ALINE tree to the
historical tree. Although outperformed by UPGMA, the neighbour-
joining tree is also close to the historical phylogeny. Given the observed
dissimilarities, it is important to note that tree construction is more
difficult than it may at first appear, primarily due to the large number of
possible tree topologies even for small numbers of terminal taxa. In our
case, there are an immense 3.776 1021 rooted or 1.016 1020 unrooted
trees possible for our 19 languages. In this context, the ALINE trees are
extremely close to the tree inferred via the standard comparative
approach. The MAST distance reflects this with a low probability value;
i.e. the likelihood that one would get a tree equally close to the true tree
by selecting any tree at random.
The three discrepancies between the traditionally-constructed tree (A)

and UPGMA ALINE tree (B) illustrate the difficulties of tree
reconstruction – either by computer or by a trained historical linguist.
The greatest error in the tree involves the attachment of group C. In the
traditional tree, it is attached to the subgroup comprising groups AþB,
whereas in the ALINE tree it is attached to the subgroup comprising
groups DþE. There is more lexical replacement in the AþB subgroup
than in C, therefore resulting in the superficial appearance that C is closer
to the DþE subgroup. This similarity is an artefact of the degree of
lexical retention in groups C, D and E, which ALINE cannot
differentiate from innovations in subgroup AþB. Other criteria, such
as shared phonological innovations and an older layer of innovated
vocabulary, indicate that C groups closer to AþB than DþE, but that
AþB has undergone marked repopulation of its lexicon under the
influence of a non-Austronesian stratum in western Sumba.
The second discrepancy is the attachment of Kabu Karudi. Tree A

assigns Kabu Karudi to group B, whereas tree B assigns Kabu Karudi to
group A. In similar fashion to the first discrepancy, the other group B
languages, Gaura and Bondo Kodi, have undergone significant lexical
innovation while their parent was still a single language. Kabu Karudi is
therefore comparatively more conservative, which gives the impression
that it is more similar to the languages of group A (which also often share
this conservative vocabulary). Compounding this dilemma is the fact that
Kabu Karudi is in close geographical proximity with, and has borrowed
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heavily from, Dede Kadu, a group A language. Since ALINE (along with
other computational approaches) cannot identify loans, borrower
languages are artificially skewed towards donor languages. (We show
below that ALINE still handles this situation with relative efficiency).
The third discrepancy is the attachment of Kalembu Ndara Mane to

Karuni (tree A) or to Malata (tree B). This is the most difficult
discrepancy to assess, as there seems to be evidence supporting both
perspectives. Arguments for attaching Kalembu Ndara Mane to Karuni
include shared, arbitrary phonological innovations: (Table 9).
However, at least one phonological innovation and several lexical

similarities also suggest closeness to Malata (Table 10).
On balance, tree A probably gives the correct grouping on the grounds

that idiosyncrasies shared by Kalembu Ndara Mane and Karuni are
more obviously derived from a common ancestor. However, it should be
noted that this was one of the most difficult sub-grouping assessments to
make under the traditional comparative method, and ALINE cannot be
faulted for providing an alternative analysis which has so much
supporting evidence.

Table 9. Shared characteristics linking Kalembu Ndara Mane and Karuni.

Gloss English KNM Karuni Malata Dede Kadu

beri ‘‘give’’ jai jai jani jani
tulang ‘‘bone’’ ruwiwi ruwi ri ri
hantam ‘‘crush’’ tauwa tauwa tausa ta?a

debu ‘‘dust’’ pautana pa?utana kombura kobura
lebar ‘‘wide’’ gellara gallara belleka belleka
ini ‘‘this’’ nawwa nagha ne naj

Table 10. Shared characteristics linking Kalembu Ndara Mane and Malata.

Gloss English KNM Malata Karuni Dede Kadu

kanan ‘‘right’’ kawano kawano kawana kawana

pohon ‘‘tree’’ wasu ghasu pu pu?u
potong ‘‘divide’’ loppu loppu ropo katupu
benar ‘‘correct’’ hinna takka hinatakka ghinnadto patubtana
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In summary, two phenomena obscure relationships between languages
and lead ALINE to less than optimal reconstructions. Firstly, substantial
lexical replacement in some languages or subgroups, sometimes through
language contact. This process creates an extra degree of distance that is
phylogenetically artificial. Secondly, diffusion of sound changes across
the boundaries of genetic language groups. Since sound changes act upon
phonemes (the direct units of analysis in ALINE), any changes, which
occur across a group of languages will serve to separate affected from
unaffected languages. In situations of strictly phylogenetic inheritance,
this is unproblematic. However, in language contact situations (as on
Sumba), sound changes can diffuse across phylogenetic boundaries. Both
situations can confuse the ALINE algorithm.
We also constructed trees using all words and just PAn cognates; the

UPGMA tree was unchanged and the neighbour-joining tree was slightly
improved. This result was surprising because it is commonly thought that the
presence of loans can significantly affect the generation of trees using
automated methods. Our results suggest that this tree-building method is
robust to the presence of loans to a significant degree, and that under many
circumstances, it may be unnecessary to remove loans prior to tree
construction. To understand the affect of loans on the accuracy of trees, it
would be necessary to perform additional analyses using datasets with
differing amount of external influence, andthis is planned for future research.
Finally, Figure 6 shows the distribution of symmetric distances from

the historical tree to the resampled UPGMA and neighbour-joining trees,
as well as random trees. Although the distributions do not include the
historical tree (distance¼ 0), they are remarkably close.
In summary, the ALINE distance performs well when used with

distance-based tree-building algorithms, especially UPGMA. Many
previous linguistic distances are based on an existing historical tree; here,
we can computationally reconstruct the historical tree with reasonable
accuracy and no prior knowledge of language relationships. We
emphasize, however, that we do not envision the ALINE distance
replacing standard comparative methods. Furthermore, refinements of
the distance statistic would likely yield better performance. However, in
cases where the historical tree is uncertain, the ALINE tree could give a
reasonable first guess for a historical linguist attempting a manual
reconstruction (thereby providing significant time savings in the case of
large datasets), or the ALINE tree could be used as a prior for other
computational methods such as that of Atkinson and Gray (2006).
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Linguistic Similarity Map
Another useful task in historical linguistics is the creation of maps
showing the spatial extent of languages or language families. Comparing
maps integrating linguistic, geographic and genetic data is important for
understanding how these datasets relate to each another. Of great interest
to our project are the islands of eastern Indonesia, where there is a mosaic

Fig. 6. Robinson-Foulds symmetric distance from historical tree for 4000 randomized
and re-sampled trees (1000 in each category). Random (far right) includes trees produced
by randomly shuffling words within languages and words with glosses as described in the
text. The UPGMA (far left) and neighbour-joining (middle) trees were produced by
sampling with replacement from 200 pairwise word comparisons for each language
comparison, functionally resulting in using random weighted averages as the language
distance. The unweighted averages produced distances of 6 and 10 respectively. The
distribution gives an idea of the amount of variance in the data and the overall
performance of the method. The additional dark area shows where the two leftmost
distributions overlap.
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of Austronesian and Papuan languages. To examine the spatial
distribution of language groups in eastern Flores and Alor using ALINE,
we calculated the distance of each contemporary language from PAn and
mapped the result (Figure 7). The ALINE distance was log transformed to
increase the distance between mean clusters and improve the performance
of the interpolation algorithm. Transformed scores were imported into a
geographic information system application (ArcMap 9.0) and interpo-
lated by kriging (default options). The interpolation was clipped using an
outline of the Indonesian coastline, and the predicted ALINE distances
stretched along a grayscale. The mean distances for PAn (d¼ 0.715) and
Papuan (d¼ 0.935) clusters were significantly different (p5 0.001,
t¼ 17.02, two-independent sample t-test, SPSS 12.0.1).
To determine how well the ALINE distance reconstructs boundaries

between major language families, we compared the ALINE map to a
well-known historical map of the area, the Language Atlas of the Pacific
(Wurm & Hattori, 1981). The ALINE map captures the main distinction
between the Papuan languages to the east, and the Austronesian
languages to the west. Wurm and Hattori’s map shows an Austrone-
sian-speaking coastal region along the western islands of Alor that is not
captured by the ALINE map. However, plotting the location of each
language list clearly illustrates that missing data cause this lack of detail.

Fig. 7. Interpolated map based on the ALINE distance between proto-Austronesian and
51 200-word lists from Flores and Alor, eastern Indonesia. The ALINE distance was
transformed using a log-linear function as described in the text. The boundary between
Austronesian and Papuan languages was drawn by Wurm and Hattori (1981) using
traditional methods.
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Overall, the ALINE distance performs remarkably well in a mapping
context. In future, similar maps integrating genetic data will allow us to
better understand how genetic and linguistic datasets are interrelated.

DISCUSSION

While computational approaches hold promise for automated processing
of hundreds or even thousands of word lists, they are not currently used
routinely for this purpose. Several important limitations have restricted
the use of computational approaches in historical linguistic analysis. Most
importantly, there is no widely accepted model framework describing
language change. While some models of sound change do exist, they have
not been used to build predictive models of phonological evolution
because the historical processes of interaction between languages are often
more significant factors shaping the structure of languages. Computa-
tional models are by nature simplifications of the real-world processes
they are designed to emulate, and as such, will always exclude
information. In our analysis, for example, ALINE uses only a subset of
all the possible phonological features observed in our word lists, and this
may result in missing key evidence for linkages between languages that a
traditional historical analysis might discover. We also did not have access
to comparative syntactical information for any of the languages under
consideration, and therefore syntax could not be incorporated into either
the computational or traditional analyses. Other limitations of the
computational approach include the presence of loans, short words and
internal cognacy. Manual analysis by a linguist using traditional methods
can avoid many of the problems associated with automated methods, but
even the best historical linguist is limited by the amount of information
that they can process within a given timeframe.
Despite limitations, computational methods permit large-scale com-

parisons of languages that must remain beyond the reach of traditional
techniques. This is particularly true when the intention is to combine
historical linguistic analysis with other data, such as from genetics,
geography or archaeology. For this kind of combined analysis of
extensive datasets, the problem of scale looms large. For example, an
interdisciplinary project may begin with a partial Mantel test that
correlates matrices of geography, genetic and linguistic distances. The
number of cells in each distance matrix increases quadratically as sample
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locations are added. A distance matrix of 18 Sumbanese languages, based
on a 200-word Swadesh list, requires 30,600 word comparisons (153
pairwise language comparisons, 200 words per comparison), and is
amenable to traditional analysis. Conversely, our complete dataset
includes word lists for 405 Indonesian languages, and the resulting
distance matrix requires 16.3 million word comparisons. Such compar-
isons are beyond standard linguistic approaches, whereas the method
discussed here can easily handle such sizable datasets.
Our hope in adapting ALINE as a measurement of phonetic distance is

to develop a computational method that can move beyond cognate-only
approaches by preserving as much of the rich store of phonetic
information as possible. Thus, we emphasize that the results discussed
here do not hinge on identification of cognates or loans. Our maps and
trees are based purely on phonological similarity, and the ALINE
algorithm has no prior information about historical relationships of
words or languages. This is both a strength and weakness of our
methodology. The weakness is that our analysis can potentially be biased
by the presence of loans and borrowing (although, at least on Sumba, we
have demonstrated that the bias introduced by loans is minimal). The
strength is this method’s computational basis, its scalability, and its close
correspondence to results from more traditional linguistic approaches.

CONCLUSIONS

The method presented here suggests that the ALINE distance can be used
as a ratio scale measurement of the dissimilarity between shared-meaning
word pairs. Our method is based on a normalized version of the ALINE
algorithm, and represents an absolute phonetic distance between 0 and 1.
The method is suitable for analysing large datasets because it can be fully
automated, runs quickly, and can easily be scaled as more data becomes
available. The principle output of our method is a matrix of distances
between language pairs. These linguistic distances are superior to
previous quantifications, and are suitable for direct comparison with
genetic and geographic distances. We have shown that this method can
be used to generate language trees and classification maps, and we have
validated these results using traditional, manual analysis via the
comparative method. Monte Carlo simulation and bootstrapping results
add statistical support to our claim that the language phylogeny based on

366 S. S. DOWNEY ET AL.



the ALINE distance is robust. In addition, results to be published
elsewhere use the ALINE distance in relation to genetic and geographic
pairwise distances (Lansing et al., 2007).
The ALINE method is proven to be useful for detecting patterns of

phonetic similarity at multiple scales. At the level of 18 languages and a
single island, we were able to faithfully assemble a language tree with the
same number of major sub-groupings as was found independently using
the comparative method. At a regional scale, we have presented a
language classification map for a portion of the Indonesian Archipelago
spanning Komodo, Flores, and Alor, and were able to detect the major
language groups suggested by previous work using the comparative
method. The results discussed in this paper suggest that the ALINE
distance will be a useful, and indeed necessary, method for analysing
large language datasets as these increasingly become available.
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